
www.manaraa.com
acmqueue | march-april 2017 1

Dear KV,
The company I work for rolled out a new monitoring system
one weekend, and it didn’t go as well as we would have liked.
When we first brought up the monitoring system, several
of our servers started to show very high CPU load. Initially,
we could not figure out why. The monitoring processes on
each server were very busy, so we turned off the monitoring
system and the servers got less busy. Eventually, we realized
it was the number of polls being issued by the monitoring
system that was causing the servers to use so much CPU
time. We decreased the polling frequency to every 10
minutes, and this seemed to be the sweet spot for system
performance. What I would like to know is how one should
go about tuning such systems, as it seems still to be done via
trial and error.

Polled Too Frequently

Dear Polled,
Trial and error? The problem here is usually a failure
to appreciate just what you are asking a system to do
when polling it for information. Modern systems contain
thousands—sometimes tens of thousands—of values that
can be measured and recorded. Blindly retrieving whatever
it is that might be exposed by the system is bad enough, but
asking for it with a high-frequency poll is much worse for
several reasons.

The Observer Effect
Finding
the balance
between zero
and maximum

1 of 5 TEXT
ONLY

who is
KV?

I

click for video

kode vicious

www.manaraa.com
acmqueue | march-april 2017 2

The first reason is the one that you bring up in your
letter: the amount of overhead introduced by simply
asking for the data. Whenever you ask the system for its
configuration state, whether that’s a routing table or the
state of various sysctls (system control variables), the
system has to pause other work to provide a consistent
picture of what’s going on. KV knows that in recent
years the idea of consistency has been downplayed in
favor of performance—in particular, by various database
projects. In the systems world, however, we still think that
consistency is a good thing™ and therefore the system will
try either to snapshot the data you request or to pause
other work while the data is read out. If you ask for a few
thousand items, and a random sysctl –a shows 9,000+
elements on a server I am using, then that’s going to take
time—not forever but not nothing, either.

The second reason that polling for data frequently is
a problem is that it actually hides the information you
might be looking for in the noise generated by retrieving
and communicating the values you asked for. Every time
you ask the system for some stats, it has to do work to
get those stats, and the system doesn’t account for your
request separately from any other work it has to do. If
your monitoring system is banging away at the server
asking for data every minute, then what you will see
in your monitoring system is the load that the system
itself is generating. Such Heisen-monitoring, where
your monitoring system is overwhelmingly affecting the
measurements, is completely pointless.

In a monitoring system, there is always the tension
between too much and too little information. When you’re

2 of 5

Ikode vicious

www.manaraa.com
acmqueue | march-april 2017 3

debugging a problem, you always wish you had more data,
but when your system is running normally, you want it to do
the work for which it was deployed. Unless you get off on
just pushing monitoring systems—and, yes, there is definitely
a handle for those people somewhere on social media—you
need to find the Goldilocks zone for your monitoring system.
To find that zone, you must first know what you’re asking for.
Figure out which commands the monitoring system is going
to execute on your servers, and then run them individually in
a test environment and measure the resources they require.
You care about runtime, which can be found to a coarse level
with the time(1) command. Here is an example from the
server just mentioned.

time sysctl -a > /dev/null
sysctl -a > /dev/null 0.02s user 0.24s system 98%
cpu 0.256 total

Here, grabbing all of the system’s various system-
control variables takes about a quarter of a second of
CPU time, most of which is system overhead—that is, time
spent in the operating system getting the information
you requested. The time(1) command can be used on any
utility or program you choose.

Now that you have a rough guess as to the amount of
CPU time that the request might take, you need to know
how much data you’re talking about. Using a program that
counts characters, such as wc(1), will give you an idea of
how much data you’re going to be gathering and moving off
the system for each polling request.

3 of 5

Ikode vicious

www.manaraa.com
acmqueue | march-april 2017 4

sysctl -a | wc -c
378844

You would be grabbing more than a quarter of a
megabyte of data here, which in today’s world, isn’t much,
but it still averages out to 6,314 bytes per second if you
poll every minute; and, in reality, the instantaneous rate is
much higher, causing a 3-Mbps blip on the network every
time you request those values.

Of course, no one in his or her right mind would just
blindly dump all the sysctl values from the kernel every
minute—you would be much more nuanced in asking for
data. KV has seen a lot of unsubtle things in his time,
including monitoring systems that were set up to do just
this sort of ridiculous level of monitoring. “We don’t want
to lose any events; we need a transparent system to
find bugs!” I hear the DevOps folks cry. And cry they will,
because sorting through all that data to find the needle
in the noise will definitely not make them happier or give
them the ability to find the bug.

What is needed in any monitoring system is the ability to
increase or reduce the level of polling and data collection
as system needs dictate. If you’re actively debugging a
system, then you probably want to turn the volume of data
up to 11, but if the system is running well, you can dial the
volume back down to 4 or 5. The volume can be thought of
as the polling frequency times the amount of data being
captured. Perhaps you want more frequent polling but
less data per request, or perhaps you want more data for
a broader picture but polled less frequently. These are
the horizontal and vertical adjustments you should be

4 of 5

I

O
f course,
no one in his
or her right
mind would
just blindly

dump all the
sysctl values
from the kernel
every minute—
you would be
much more
nuanced in
asking for data.

kode vicious

www.manaraa.com
acmqueue | march-april 2017 5

able to make to your system at runtime. A one-size-fits-all
monitoring system fits no one well. The fear, of course, is
that by not having the volume at 11 you will miss something
important—and that is a valid fear—but unless the whole
reason for your existence is to capture all events at all
times, you will have to find the right balance between 0
and maximum volume.

KV
Kode Vicious, known to mere mortals as George V. Neville-
Neil, works on networking and operating-system code for

fun and profit. He also teaches
courses on various subjects
related to programming. His
areas of interest are code
spelunking, operating systems,
and rewriting your bad code
(OK, maybe not that last one).
He earned his bachelor’s
degree in computer science
at Northeastern University in
Boston, Massachusetts, and is
a member of ACM, the Usenix
Association, and IEEE. Neville-
Neil is the co-author with
Marshall Kirk McKusick and

Robert N. M. Watson of The Design and Implementation of
the FreeBSD Operating System (second edition). He is an avid
bicyclist and traveler who currently lives in New York City.
Copyright © 2017 held by owner/author. Publication rights licensed to ACM.

5 of 5

I

Related articles

3 Kode Vicious Bugs Out
http://queue.acm.org/detail.cfm?id=1127862

3 A Conversation with Bruce Lindsay
Designing for failure may be the
key to success.
http://queue.acm.org/detail.cfm?id=1036486

3 Software Needs Seatbelts and Airbags
Emery D. Berger
Finding and fixing bugs in deployed
software is difficult and time-consuming.
Here are some alternatives.
http://queue.acm.org/detail.cfm?id=2333133

kode vicious

http://queue.acm.org/detail.cfm?id=2333133

www.manaraa.com

Copyright of ACM Queue is the property of Association for Computing Machinery and its
content may not be copied or emailed to multiple sites or posted to a listserv without the
copyright holder's express written permission. However, users may print, download, or email
articles for individual use.

